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The diffusion model of material dispersion is widely used to describe various heat mass 
transport processes occurring under natural conditions and in technological equipment. A 
huge range of applications and great simplifications as compared to the complete system of 
hydrodynamics and mass transport equations are the basic reasons for researchers' interest 
in dispersion problems. The advantages of dispersion theory lie in the ability to use aver- 
aged descriptions of processes, where certain variable characteristics are replaced by con- 
stant parameters, as well as in reduced dimensionality of the problem equations. 

The diffusion model has long been used in practice, but only since the fundamental 
studies of Taylor [i, 2] has the technique been justified as (in some sense) a limiting ap- 
proach, and empiricism avoided. Taylor's studies [i, 2] were a powerful stimulus toward the 
study of various aspects of dispersion theory, and we may note several original approaches 
to the problem [3-8], as well as the overview of [9], which extended the theory to more com- 
plex cases. 

In all those studies, as in many others, only a single convective diffusion equation 
was considered, while in practice problems are not at all rare in which a mixture consists 
of several components and (or) one must consider cross-effects such as thermodiffusion, etc. 
in flow of the mixture in channels and similar regions. A generalization of dispersion 
theory to the case of flow of a multicomponent system in a circular tube was presented in 
[i0], which also considered the presence of a first order reaction on the channel wall. In 
the present study we will complicate the analysis by considering dependence of the diffusion 
coefficients on component concentration and temperature, as well as taking into account the 
possibility of multidimensional fluid flow in the channel. Thus, in the general case we 
will commence from a nonlinear formulation of the problem. 

As an example of the application of multicomponent mixture dispersion theory we may 
consider the problem of liquid capillary chromtography. The effect of thermodiffusion on 
the material dispersion process was studied in [ii, 12], although in those studies the tem- 
perature profile was determined beforehand independent of the concentration of the target 
component, i.e., the effect of changes in material concentration gradients upon heat trans- 
port was not considered fully, as is demanded by the equations of thermodynamics of irre- 
versible processes, and in particular, the Onsager reciprocity principle [13, 14]. Thus, 
[ii, 12] essentially dealt with a single equation for material concentration, i.eo, a cer- 
tain modification of the conventional single-component dispersion theory [i, 2]. 

Of definite practical interest is the case of dispersion of material with abrupt de- 
crease in the effective diffusion coefficient in individual regions of the flow, where con- 
tact between circulation zones occurs. It has been shown that in such a situation it is 
desirable to resort to a cellular description of the process, asymptotically justified over 
a certain time interval. 

i. Derivation of the Effective Diffusion Equation. We will consider the motion of a 
multicomponent mixture in a circular tube with imposition upon the main flow having a mean 
velocity u of a circulation flow, characterized by velocity components w, v along the z and 
r axes of a cylindrical coordinate system. We will assume the material distribution is axisym- 
metric: 3C/8~ = 0, where C is the material concentration vector-column, and ~ is the cycli- 
cal coordinate. This leads to the absence in the fundamental system of heat-mass transport 
equations 

{ ac ac ac ac a [L(C ) ac]} a [L ao 1 r -~--+ u.~T-z + u~Tz + var az ~ = T r  (C) Tr  ( I . i )  
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of a convective term in the direction of the ~ axis. Here L(C) is a symmetric, positively 
defined square kinetic coefficient matrix, as required by the Onsager reciprocity principle 
and increase in entropy [13, 14]. In the general case L depends on the components c i of 
the matrix C. If needed the temperature can be considered one of the components of matrix 
C. We consider the material in the mixture to be dynamically passive, i.e., having an ef- 
fect on the hydrodynamic flow parameters, as is characteristic of homogeneous mixtures [15]. 
We take the components of the circulation velocity to be known functions of the coordinates 
z and r (there is no ~-dependence, 3/8 ~= 0 for any variable), i.e., we consider the hydro- 
dynamics problems of liquid flow realization in the tube as solved. Such flows develop, for 
example, in the presence of stirrers or other obstacles in equipment, or in the presence of 
jets, pockets, etc., in a channel, and are of definite interest in the theoretical, experi- 
mental, and practical sense [16-18]. We will also note that we have chosen the channel in 
the form of a tube of circular cross section to reduce the size of some expressions and sim- 
plify calculations. The principles used to obtain the dispersion equations by the method of 
[19, 20] do not depend on channel form, and similar results are obtained. 

Matrix equation (I.i) is supplemented by initial 

Clt=o=C.(z,r), z ~ ( - - o o ,  + o o )  ( 1 . 2 )  

and boundary conditions 

t r �9 L(c)aca lr=a = 0 ( 1 . 3 )  

Matrix equation (i.i) is reduced to a dispersion equation in a (a is the channel radius). 
manner quite similar to the analysis of [19, 20], and in fact, the difference of the multi- 
component case from the single-component one reduces to accurate "reduction" of the square 
matrix L and the need to replace division by multiplication by a matrix inverse to L, the 
matrix L -I from one or the other side of the matrix identity. For example, from Eq. (1.3), 
expressing the absence of material flow on the channel boundary, it follows in light of sym- 
metry properties and the positive definition of the matrix L that we must have 8C/Srlr= a = 
0. We consider the liquid flowing in the channel incompressible and the channel boundary 
r = a impermeable to the liquid. The arguments presented above show that the complications 
of the analysis in dispersion of a multicomponent mixture in a channel are easily overcome, 
and the calculations similar to those used in the one-component case [19, 20] can best be 
omitted. 

Limiting ourselves to the first approximation, we arrive at the equation 

aoa_~ + u ~~ aza L (G)~, L -1 (C) S (z)] W " 

Here G i s  t h e  mean c o n c e n t r a t i o n  over  t h e  s e c t i o n  ( m a t r i x ) :  

G= 2~ frC(z ,r , t )  dr, ( 1 . 5 )  
a -  

0 

and E(z)  i s  t h e  " c o n v e c t i v e  p o r t i o n "  o f  t h e  d i s p e r s i o n  c o e f f i c i e n t :  

E(z) = 2 ~ dr a--'if- J "-~ ~tt, (Z, ~) d~ . ( 1 .6  ) 
o 

Equation (1.4) is applicable at sufficiently large times, more precisely, at t ~ tz, 
where 

a 

t71 2 I rv2 (O' r) dr, 
- -  L , a  ~ 

L, is the characteristic value of the elements of matrix L. The expressions obtained, Eqs. 
(1.4)-(1.6), refer to established motion in the channel. In the case where the circulation 
motion is unsteady, the function w, and thus, according to Eq. (1.6), E(z) as well, depend 
on time. 
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Exactly as in [19, 20] one can obtain an initial condition for Eq. (1.4) by making use 
of Eq. (1.2) and merging the two expansions by the perturbation method [21, 22]: 

G I t = 0 = G , ( z ) = ~  rC,(z,r) dr. 
o 

In typical situations the convective portion of the dispersion coefficient significant- 
ly exceeds the molecular [3, 19] and, moreover, changes in E(z) are insignificant, so that 
the simplified equation 

aoo__i_ + u -~zaa = E. Oaz L-I (G) ~-z ( 1 . 7 )  

(E, = const) is of independent interest. But cases exist in which the circulation flow ve- 
locity w drops sharply in individual sections of the tube. This occurs, for example, at the 
borders between zones with different vorticities for flow over pockets by the Lavrent'ev 
pattern [19, 23]. Since such effects have been studied but little in descriptions of heat- 
mass transport problems by effective diffusion equations, we will concentrate our attention 
on analysis of such situations below. 

When the function w vanishes on the liquid zone boundary w is of first order smallness 
(3w/Sz ~ 0 on the boundary), which leads to a second order null in the function E, as fol- 
lows from Eq. (1.6). All the above leads to the necessity of considering a boundary layer 
equation of the form (see [19, 20] for details) 

([ a-F +aC u~aG _ aza L(G) + kz~L-i(G)] ~ (1.8) 

(k = E"(0)/2). Sucb a simplification, like that previously presented, Eq. (1.7), is based 
on fulfillment of the corresponding inequalities of [19, 20] for all components of the ma- 
trix L. Otherwise, it would be necessary to make special stipulations and refinements for 
certain components of the vector equations (1.7), (1.8). 

The major unique features of the dispersion equations obtained in this section, as com- 
pared to the traditional ones, are the nonlinearity of the equations and (even for L = const, 
when the equations are linear) the presence of a dependence of the dispersion coefficients 
on the longitudinal coordinate. And we are most interested in cases where this coefficient not 
only changes, but does so significantly, leading to Eq. (1.8). The simplest case for analy- 
sis, yet sufficiently widespread, is the case of a constant matrix L. Therefore, it is de- 
sirable to demonstrate the solution of the equations obtained with an example. 

2. Analysis of the Linear Problem (L = const (G)). When the components of the matrix 
L are independent of the vector G the system of equations (1.4), (1.7), (1.8) can be "split" 
by performing a linear transform on the solution vector G: G = RT, where T is the new solu- 
tion vector, and R is a square nondegenerate matrix, diagonalizing the kinetic coefficient 
matrix: 

D = R-1LR, Dij = • i. ] = t ,  2 . . . .  , N ( 2 . 1 )  

( 6 i j  i s  t h e  K r o n e c k e r  s y m b o l ) .  The e x i s t e n c e  o f  a m a t r i x  R w i t h  such  p r o p e r t i e s  f o l l o w s  
f rom t h e  g e n e r a l  t h e o r i e s  o f  l i n e a r  a l g e b r a  [24] unde r  c o n d i t i o n s  which  t h e  m a t r i x  L s a t i s -  
f i e s  ( symmet ry  and p o s i t i v e  d e f i n i t i o n ) .  I t  a l s o  f o l l o w s  f rom t h i s  t h a t  <i > 0 f o r  a l l  i .  
The a c t i o n  o f  t r a n s f o r m  ( 2 . 1 )  on a l l  t h e  e q u a t i o n s  ( 1 . 4 ) ,  ( 1 . 7 ) ,  ( 1 . 8 )  i s  s i m i l a r ,  so t h a t  
we w i l l  now work o n l y  w i t h  Eq. ( 1 . 8 ) ,  h a v i n g  in  mind t h e  p rob lem f o r m u l a t e d  above .  

With c o n s i d e r a t i o n  o f  Eq. ( 2 . 1 )  we r e w r i t e  Eq. ( 1 . 8 )  in  t h e  form 

or, 0r, 0 [( . ,  + kz2.T') ~ 
o--Y + u-sF = -~f -$7z J, i = t ,  2 . . . . .  N. ( 2 . 2 )  

In  t h i s  e q u a t i o n ,  as  in  Eq. ( 1 . 8 ) ,  z = 0 i s  chosen  as t h e  c o o r d i n a t e  o f  t h e  b o u n d a r y  be tween 
two a d j a c e n t  c i r c u l a t i o n  z o n e s .  

I n  v iew o f  t h e  i d e n t i c a l  s t r u c t u r e  o f  Eq. ( 2 . 2 )  f o r  a l l  i we may l i m i t  our  s t u d y  t o  one 
equation, omitting the index i where reasonable. It will also be useful to reduce Eqo (2.2) 
to "canonical" form by choosing the dimensionless variables 
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-~ zkl/~/• �9 -= tk/• n ~ u /2kV  2. ( 2 . 3 )  

We then have 

a-~- + 2n~-~ = (t + ~2) ~ �9 ( 2 . 4 )  

As f o l l o w s  f rom Eq. ( 1 . 6 )  t h e  c r i t e r i o n  n i s  fo rmed  f rom t h e  h y d r o d y n a m i c  c h a r a c t e r i s t i c s  
o f  t h e  p r o c e s s  - t h e  r a t i o  o f  t h e  mean t r a n s p o r t  v e l o c i t y  u t o  t h e  mean s q u a r e  v e l o c i t y  o f  

a 

t h e  c i r c u l a t i o n  m o t i o n  on t h e  zone  b o u n d a r y ,  which  f o l l o w s  f rom t h e  e x p r e s s i o n  k =  2-~ lrv~(O,  
a t ]  

0 

r ) d r ,  o b t a i n e d  f rom Eq. ( 1 . 6 )  f o r  t h e  f u n c t i o n  E ( z )  a f t e r  c e r t a i n  t r a n s f o r m a t i o n s  w i t h  u s e  
o f  t h e  l i q u i d  i n c o m p r e s s i b i l i t y  e q u a t i o n .  For  i d e n t i c a l  p a r a m e t e r  v a l u e s  t o  t h e  l e f t  and 
r i g h t  o f  t h e  zone  b o u n d a r y ,  Eq. ( 2 . 4 )  can  be c o n s i d e r e d  in  t h e  r e g i o n  r e ( - ~ ,  +~) .  T h i s  
c a s e  i s  u s u a l l y  r e a l i z e d ,  s i n c e  t h e  componen t  o f  t h e  v e l o c i t y  v e c t o r  v i s  c o n t i n u o u s  on t h i s  
b o u n d a r y ,  so  t h a t  t h e  v a l u e  o f  k i s  one  and t h e  same in  t h e  two a d j a c e n t  zones  g i v e n  t h e  
c o n d i t i o n  t h a t  t h e  t u b e  r a d i u s  i s  n o t  d i s c o n t i n u o u s  a t  t h e  p o i n t  o f  zone  c o n t a c t .  A l t h o u g h  
in  t h i s  c a s e  t h e  d e s c r i p t i o n  o f  h e a t - m a s s  t r a n s p o r t  in  t h e  b o u n d a r y  r e g i o n  may become c o m p l i -  
c a t e d ,  in  i n d i v i d u a l  e x a m p l e s  i t  i s  a l s o  j u s t i f i a b l e  [20]  t o  assume t h a t  k i s  one and t h e  
same f o r  t h e  two c o n t a c t i n g  p o c k e t s .  T h i s  f a c t  l e a d s  t o  e q u a l i t y  o f  t h e  b a s i c  s i m i l a r i t y  
c r i t e r i o n  n f o r  t h e  two z o n e s ,  and i f  t h e  d i f f u s i o n  c h a r a c t e r i s t i c s  o f  b o t h  zones  a r e  i d e n -  
t i c a l  (K i s  one and t h e  s a m e ) ,  a l l  t h e  v a r i a b l e s  in  Eq. ( 2 . 3 )  can  be d e d i m e n s i o n a l i z e d  i d e n -  
t i c a l l y  and can  be c o n s i d e r e d  c o n t i n u o u s  upon t r a n s i t i o n  t h r o u g h  t h e  b o u n d a r y  z = 0 be tween  
t h e  p o c k e t s .  

Of s p e c i a l  i n t e r e s t  i s  t h e  p r o b l e m  o f  h e a t - m a s s  t r a n s p o r t  be tween  t h e  zones  w i t h  t h e  
initial condition, which without loss of generality can be written in terms of the matrix T: 
TI~= 0 = f(~), If we carry out the transform T = Xexp [ntan -I (~)], then for the function X 
we obtain in place of Eq. (2.4) the self-conjugate equation 

o_~+i__4~x= (i + ~ ) ~  (2.5) 

w i t h  t h e  o b v i o u s  t r a n s f o r m a t i o n  o f  t h e  i n i t i a l  c o n d i t i o n :  XI~= o = f ( ~ ) e x p [ - n t a n  -~ ( ~ ) ] .  
The p r o b l e m  o f  c o n s t r u c t i n g  t h e  s o l u t i o n  o f  Eq. ( 2 . 5 )  f o r  t h e  g i v e n  i n i t i a l  c o n d i t i o n  c o i n -  
c i d e s  in  i t s  s t r u c t u r e  w i t h  t h e  method  o f  s e a r c h i n g  f o r  e x p a n s i o n s  o f  a r b i t r a r y  f u n c t i o n s  
in  i n t e g r a l s  ( s e r i e s )  i n  a s y s t e m  o f  e i g e n f u n c t i o n s  o f  t h e  c o r r e s p o n d i n g  S t u r m - L i o u v i l l e  
p r o b l e m ,  wh ich  i s  b a s e d  on o p e r a t i o n a l  c a l c u l a t i o n  and h a s  been  p r e s e n t e d  in  d e t a i l  in  [25,  
26 ] .  C o n s i d e r i n g  t h i s ,  we w i l l  o m i t  c a l c u l a t i o n s  making  u s e  o f  t h e  p r o p e r t i e s  o f  t h e  L eg en -  
d r e  f u n c t i o n s ,  e t c .  [ 2 7 ] ,  and p r e s e n t  o n l y  t h e  f i n a l  r e s u l t s  f o r  t h e  f u n c t i o n  T and t h e  i n -  
t e g r a l  t r a n s f o r m s  i n v o l v e d  in  f i n d i n g  T, which  may be u s e f u l  in  c o n s i d e r a t i o n  o f  o t h e r  p r o b -  
l e I n s  : 

where 

oo 

r sh (~r) exp (-- ~2r) dr 
T = 2 e x p ( n a r c t g ~ - - + ) 0 J  c h - - h ~ r ~ T s - ~  X 

2 

j = l  

2 ~ -  § --i-)l (I)j (~, r) (1) i (~, r) Bj  (~) d~, 
0 

i 
Bj (~) = "-2- [] (~) exp (--  n arctg ~) + ( - -  l)J [ ( - -  ~) exp (n arctg ~)]; 

-~-] P~,~-1/2 (~) + (-- ~)J P.~rL~/~ ( -  ~) e~p [-~-) . 

~P] (x, r) = vj2~+lr(ej  -~ it~2 -~ in~2) F (pj -~ in~2 -- Jr~2) , ] -~ 1, 2; 

(2.6) 

v I = i is the imaginary unit; v2 = I; Pz = 1/4; p= = 3/4; Pvm(z) is a Legendre function 
[27]; F(z) is a gamma function. We will note that the functions ~jn(x, r) are real along 
the integration line. The expressions for the unknown integral transforms take on the form 
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oa 

g (x) = 2 ch ~ (~r) - r  sh 2 (nn) \ ~ '2 2 
0 

~o 

1" + W + - -  (x, r) (~) q)~ (x, r)  d~; 
0 ( 2 . 7 )  

oo 

g (x) = 2 ch 2 (~r) + sh 2 (:~n) 2 
0 

o o  

0 

(2.8) 

In the special case n = 0 the integral transforms of Eqs. (2.7), (2.8) transform into those 
studied in [28], i.e., generalize the latter. A proof of the corresponding theorems for the 
expansions of Eqs. (2.7), (2.8) was presented in [29]. 

Equation (2.6), the solution for the individual components of the matrix T, permits sim- 
ple construction of the general solution of the problem of heat-mass transport between cir- 
culating pockets after application of the transform R. We will note that the parameters ~i 
of Eq. (2.1) characterize the rate of approach of the solution to a steady-state value for 
the corresponding components of the matrix T, or if we may express it so, the "modes t' of the 
matrix G, which follows from both Eq. (2.3) and Eq. (2.6). If in this case the individual 
K i (i = i, 2, ..., N) differ significantly from each other, we can simplify the solution 
over certain time intervals by replacing the individual "modes" of Eq. (2.6) by steady-state 
solutions of the corresponding (for a given number) Eq. (2.4). 

3. Construction of a Cellular Heat-Mass Transport Scheme between Circulation Zones. 
The solution of Eq. (2.6) constructed in Sec. 2 for the boundary layer equation (2.4) de- 
scribes the process of heat and mass exchange between adjacent circulation zones near the 
boundary for time values of the order of tl. At longer times the pockets become "depleted" 
[19, 20] and the treatment of the problem must be refined. Of independent interest is study 
of the dynamics over time of the mean over the pocket of the material concentration vector. 
Let ~ be the length of the circulation zone. Having integrated Eq. (1.4) over z with the 
limits (0, ~), we find 

d <G> 

w h e r e  t h e  m e a n  c o n c e n t r a t i o n  v e c t o r  i s  d e t e r m i n e d  b y  t h e  e x p r e s s i o n  

l 

<G> = - 7 -  --z-V- C d V  
0 V 

(V = ~a2~ is the cell volume). In deriving Eq. (3.1) use was made of the equality to zero 
of the function E(z) on the boundary between the zones. For simplicity in the future we 
will assume all pockets to be the same. 

At this point we will consider only the linear problem for a constant matrix L. Use of 
the linear transform of Sec. 2 (G = RT) leads to an equation for the function <T>, stemming 
from Eq. (3.1): 

[D is the diagonal matrix (2.1)]. It has been shown previously [19, 20] that flows uT - 
DST/3z at sufficiently lengthy times t >> tl can be expressed in terms of mean values <T> 
of the cell under consideration and adjacent ones. More precisely, in [19, 20] u = 0, al- 
though all the methodology of constructing cellular models in [19, 20] remains unchanged for 
u ~ 0, so that we will make use of it without further explanations. It is of importance 
that at t >> t I one can use the steady equations (2.2), which simplifies calculations signi- 
ficantly. Assigning the chosen cell the index j, and the adjacent ones the indices j - 1 
and j + 1 (see Fig. i), using the algorithm of [19, 20], after some calculations we obtain 
an expression for the material flux 

uT --DOT/Oz]z=o : u [ ( l  + ~)<TJ-I> - -  ~ < ~ > ]  ( 3 . 3 )  

a n d  a s i m i l a r  o n e  f o r  t h e  b o u n d a r y  z = g .  H e r e  
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a = [exp(2~n)-- I]-I. (3.4) 

Substituting Eq. (3.3) in Eq. (3.2), we find 

d <rJ> (I + ~)<r~-1>--(i + 2~)<rJ) + ~<TJ+I> (3.5) 
u dt 

The value of s is one and the same for all cells n, and hence, according to Eq. (3.4), the 
quantity a is also independent of cell number (see Sec. i) and component. Therefore, it 
will be useful to apply to Eq. (3.5) a reverse transform R and transform to the vector <G>: 

d<G~> (~ + ~)<CJ-I>--(~ + 2~)<GJ> + ~<G~+I> (3.6) 
u dt 

The interesting fact that Eqs. (3.6) for the individual components of the vector <G> 
prove to be independent of each other is explained by the fact that Eq. (3.6) is suitable 
for times large in comparison to t I (t ~ t 2 = s t 2 >> tl). A quasisteady description of 
the process by diffusion equations is characteristic of a given time interval. The compon- 
ents of the matrix L then affect only the rate of approach to equilibrium of the individual 
"modes" of the matrix G, but not the slower changes of mean concentrations described in Eqs. 
(3.5) and (3.6). 

Equations (3.5), (3.6) deal with the internal circulation zone, where all pockets form 
a chain of cells following one another (Fig. i). The end pockets in the heat-mass exchange 
configuration are under specific conditions, and require certain additional information on 
the process at the entrance and exit of the zone system. For the first zone we can take 
the flux from without (at the input) equal to u<G~ (<GO> is a specified known function of 
time), while for the last (M-th) we assume that material flows into a nonexistent cell with 
number M + 1 with the previous concentration, which is a discrete analog of the well-known 
[30, 31] Dankwerst condition, widely used in heat-mass transport problems. These consider- 
ations permit use of Eq. (3.6) to describe heat-mass transport in the end cells: 

z d <at> d~ <G0> -- (i +~) <~I>+~ <G2>, ! ~ <~M__> =(i + ~)(<GM-I>-- <GM>). (3.7) 
"u u dt 

In  t h e  s c a l a r  c a s e  t h e  sy s t em o f  e q u a t i o n s  o b t a i n e d  f o r  t h e  c e l l u l a r  model ,  Eqs.  ( 3 . 6 ) ,  
( 3 . 7 ) ,  f i n d s  wide use  in  c h e m i c a l  t e c h n o l o g y  f o r  a n a l y s i s  o f  h e a t - m a s s  t r a n s p o r t  p r o c e s s e s  
[30,  3 1 ] ,  in  which i t  i s  u s u a l l y  f o r m u l a t e d  on t h e  b a s i s  o f  c e r t a i n  h y p o t h e s e s  as  t o  t h e  
s t r u c t u r e  o f  h e a t - m a s s  t r a n s p o r t  be tween c e l l s .  We have  in  f a c t  d e r i v e d  t h e s e  e q u a t i o n s  
f rom more g e n e r a l  p r i n c i p l e s ,  more p r e c i s e l y ,  f rom t h e  s y s t e m  o f  e q u a t i o n s  o f  c o n v e c t i v e  
d i f f u s i o n ,  Eq. ( 1 . 1 ) .  I t  has  a l s o  been shown t h a t  o v e r  a c e r t a i n  t ime  r a n g e  such  a sy s t em 
can be t r a n s f o r m e d  t o  a v e c t o r  one and used  t o  i n d e p e n d e n t l y  d e s c r i b e  each  component  o f  
the concentration vetor. 

The desirability of transforming to a cellular model in our example is a result of the 
specific behavior of the dispersion coefficient in the general diffusion model of Eq. (1.4), 
which decreases abruptly near the boundary between zones, making description of heat-mass 
transport by a single equation of the form of Eq. (1.4) inconvenient. 

4. Note. It should be noted that in practical situations the form of the cell config- 
uration and its circulatory motion may be more complex than that shown in Fig. i. Neverthe- 
less, the technique for deriving cellular model equations presented above is usable with 
certain modifications for analysis of heat-mass transport in other similar situations. 

We will also call attention to the fact that the sequence of equations (i.i), (1.4), 
and (3.6) forms a unique hierarchical structure, reflecting a gradual coarsening of detail- 
ing the description of processes and corresponding simplification of that description. This 
is related to the spatial and time scales of the phenomena and should be considered depend- 
ing on the concrete goals of the problem under consideration. 
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The effective matrix diffusion equations (1.4) obtained above, as well as the simpli- 
fied variants, Eqs. (1.7), (1.8), satisfy the requirements of nonequilibrium thermodynamics 
imposed upon the dispersion coefficients. These coefficients form a symmetric, positively- 
defined matrix, which is easily derived from their functional expressions in terms of the 
matrix L, which has these properties, and from the condition E(z) e 0, following from Eq. 
(1.6). 
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EFFECT OF EXCITATION OF INTERNAL DEGREES OF FREEDOM 

IN CLUSTERS ON CONDENSATION KINETICS 

A. L. Itkin and E. G. Kolesnichenko UDC 536.423.4 

At present a number of experimental results have been presented on condensation of va- 
pors of various substances, which cannot be explained by classical theory (see the review 
[i]). One of the factors not considered in sucha theory is the effect of disruption of equi- 
librium cluster distribution over internal degrees of freedom due to the condensation af- 
fecting the kinetics of the process. A method for considering this effect has been proposed 
in a multimolecular model of condensation kinetics. The presence of internal degrees of 
freedom in a monomer can lead to an entire series of new condensation regimes. The present 
study will briefly evaluate such regimes. 

The first question which arises upon consideration of internal degrees of freedom in 
a monomer is related to the method used for defining various types of cluster internal ener- 
gy. It is clear that even small complexes (trimers, tetramers, etc.) may have a quite large 
number of oscillatory modes, which can conveniently be divided into two groups. In the first 
group we have oscillations of molecules entering into the composition of clusters - intermo- 
lecular oscillations, while in the second we have oscillations of atoms forming the molecule 
(monomer) - intramolecular oscillations. Intermolecular oscillations usually are of low en- 
ergy. Thus, for Van der Waals complexes their characteristic frequencies lie in the range 
50-200 cm -I. As for intramolecular oscillations, various situations are possible. 

I. If these oscillations are of low frequency, they effectively exchange energy with 
the intermolecular oscillations, which makes it possible to introduce the total oscillatory 
energy of the cluster Ej(k) (where j is the number of molecules in the cluster and k is the 
energy level number). The existence of various types of intermolecular oscillations is not 
then considered. 

2. If the monomers have high frequency oscillation modes, then their interaction with 
intermolecular oscillations is ineffective. The internal energy of the cluster can then be 
specified by quantum numbers k and s characterizing the total internal energy of low fre- 
quency intermolecular oscillations El(k) and high frequency intramolecular oscillations 
j(s as well as a quantum number characterizing the distribution of the latter over clus- 

iter monomers [the quantum number related to degeneration of the level (k, s Considera- 
tion of interaction leads to removal of the degeneration with respect to this number and 
development of a multiplet of closely spaced levels, while radiationless intracluster tran- 
sitions [4] rapidly lead to a microcanonical distribution for a given ~j. Here we will lim- 
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